Thermo chemistry

Thermochemistry: Thermochemistry is a branch of thermodynamics وتعتبر من تطبيقات القانون الاول للثر موديناميك

The study the energy transferred as heat involved in physical and chemical process **The First Law of Thermodynamics**

Energy cannot be created nor destroyed, only transferred align to created line of the strong of th

internal energy, E or U, of a system is the sum of all the kinetic and potential energies,

System and Surroundings

Open system

is one in which <u>matter</u> and energy can be exchanged with the surroundings

Closed systems

that can exchange energy but not matter with their surroundings

Isolated system

is one in which neither energy nor matter can be exchanged with the surroundings

The system then undergoes a change, which might involve work being done or heat being transferred.

After the change $\Delta U = U_{\text{final}} - U_{\text{initial}}$

Heat(q):measure of thermal energy transfer that can be determined by the change in temperature of an object

- Factors that determine amount of heat transfer:
 - Temperature change
 - Amount of substance
 - Nature of the substance

$\Delta \mathbf{Q} = \mathbf{mcdt}$

$\Delta \mathbf{Q} = \mathbf{n} \mathbf{C} \mathbf{d} \mathbf{t}$

 $\Delta \mathbf{Q}$ the heat change can be sensed by a variation in the temperature (dt) of system (**m**) mass of substance

- (n) number of moles of substance
- Heat capacity : amount of heat required to raise the temperature of amount of substance by 1K or 1°C.
 - Specific heat capacity (c): 1 gram of substance (J/g-K).
 - Molar heat capacity (C): 1 mol of substance (J/mol-K)

Material	c (J/g·K)
Al	0.900
Al ₂ O ₃	1.275
C2H5OH, ethanol	2.42
C ₆ H ₆ , benzene (vapors)	1.05
C6H14 n-hexane	1.65
Cu	0.385
Fe	0.452
Fe ₂ O ₃	0.651
H ₂ (g)	14.304
H ₂ O (s)	2.06
H₂O (ℓ), 25°C	J.184 ·
H ₂ O (g), 25°C	1.864
H2O, steam, 100°C	2.04
He	5.193
Hg	0.138
N ₂	1.040
NaCl	0.864
O2 (g)	0.918

$\frac{\text{If C is temperature dependent}}{C = C(T) = a + bT + cT^{2}}$ $\int dq = n \int_{T_{1}}^{T_{2}} (a + bT + cT2) dT$ $q = n[a(T) + b/2(T^{2}) + c/3(T^{3})]$ $q = n[a(T_{2} - T_{1}) + b/2(T_{2}^{2} - T_{1}^{2}) + c/3(T_{2}^{3} - T_{1}^{3})]$ Tin

ΔQ depend on the route chosen, either at constant volume or constant pressure.

<u>Constant volume</u> the entire energy supplied goes to alter the internal energy as no work is done on the gas.

$$dq_v = n C_v dT$$
$$C_v = n (\frac{dq}{dT})_v$$

Where C_v is heat capacity of the system under constant volume.

<u>**Constant pressure**</u> the energy supplied goes to increase internal energy and also supplies energy required to do work on the gas

$$dq_p = n C_p dT$$

 $C_p = n(\frac{dq}{dT})_p$

In liquid and solid

 $\mathbf{C}_{\mathbf{v}} \!=\! \mathbf{C}_{\mathbf{p}}$

In Gas

 $Cp \ > Cv$

In ideal gas

 $C_p - C_v = R$

Enthalpy(H): a state function define as the heat involved in a process at constant pressure

 $\Delta \mathbf{H} = \mathbf{q}_{\mathbf{p}}$ $\Delta \mathbf{U} = \mathbf{q} + \mathbf{w}$ $\Delta \mathbf{U} = \mathbf{q} - \mathbf{p} \Delta \mathbf{V}$ At constant pressure($\Delta \mathbf{H} = \mathbf{q}_{\mathbf{p}}$) $\Delta \mathbf{U} = \Delta \mathbf{H} - \mathbf{p} \Delta \mathbf{V}$ $\Delta \mathbf{H} = \Delta \mathbf{U} + \mathbf{p} \Delta \mathbf{V}$ $\Delta \mathbf{H} = \Delta \mathbf{Q}_{\mathbf{p}} = \mathbf{n} \mathbf{C} \mathbf{p} \mathbf{d} \mathbf{T}$ $\mathbf{C}_{\mathbf{p}} = \frac{1}{n} \left(\frac{dH}{dT}\right)_{\mathbf{P}}$

$$\Delta \mathbf{U} = \Delta \mathbf{q}_{\mathbf{V}} = \mathbf{n} \mathbf{C}_{\mathbf{V}} \, \mathbf{d} \mathbf{T}$$
$$\mathbf{C}_{\mathbf{V}} = \frac{1}{n} \left(\frac{dU}{dT}\right)_{\mathbf{V}}$$

For mono atomic

$$C_{V} = \frac{3}{2}R$$

$$C_{P} = \frac{5}{2}R$$
For diatomic

$$C_{v} = \frac{5}{2}R$$

$$C_{p} = \frac{3}{2}R$$